Lipid A fraction of LPS induces a discrete MAPK activation in acute lung injury.
نویسندگان
چکیده
Lipopolysaccharide (LPS) induces acute lung injury (ALI) via Toll-like receptor 4 (TLR4)-mediated MAPK activation. The lipid A fraction of LPS is considered to be the active moiety, but whether the lipid A-TLR4 interaction accounts completely for ALI-associated MAPK activation in vivo has not been determined. The lipid A fraction of LPS induces a discrete MAPK activation pattern in murine ALI. Mice (C57BL/6J, C3H/HeJ) were treated with intratracheal instillations of purified lipid A or LPS (10, 30, and 100 microg per mouse) or vehicle. ALI was assessed by histology. Chromogenic myeloperoxidase (MPO) activity was measured in lung homogenates. MAPK expression was quantified by immunoblotting. In vitro ERK inhibitor studies using thioglycollate-elicited macrophages were also performed. MPO increased in a dose- and time-responsive fashion. Notably, MPO was 2.4-fold greater after lipid A compared with LPS and vehicle at 6 h after instillation (lipid A, 0.88 +/- 0.25 vs. LPS, 0.37 +/- 0.21 optical density units.min(-1).mg(-1); P < 0.05). However, ALI scores were comparable at 6 and 24 h between LPS and lipid A. MPO was also comparable in vehicle-treated or C3H/HeJ mice treated with LPS or lipid A at 6 and 24 h. Phospho-ERK activation was pronounced at 6 and 24 h after lipid A but not LPS treatment. In vitro studies confirmed the relationship between phospho-ERK activation and cytokine expression in macrophage stimulated with either LPS or lipid A. Compared with whole LPS, the lipid A fraction is associated with amplified whole lung MPO and ERK activation 6 h after intratracheal instillation in mice.
منابع مشابه
p-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملDoes p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity?
Objective: In cardiovascular diseases, inflammatory response plays an important role and affects heart function. As a flavonoid compound, p-coumaric acid (pCA), commonly exists in many fruits and vegetables and has a therapeutic effect on inflammatory diseases due to its anti-inflammatory properties. The purpose of the present study was to investigate pCA anti-inflammatory effect and the miRNAs...
متن کاملPeroxiredoxin 6 overexpression attenuates lipopolysaccharide-induced acute kidney injury
Peroxiredoxin 6 (PRDX6) is a member of the PRDX family of antioxidant enzymes and correlated with inflammatory response. Therefore, we investigated the role of PRDX6 during lipopolysaccharide (LPS)-induced acute kidney injury. Both 3 months aged PRDX6-overexpressing transgenic mice (PRDX6 mice) and wild type (WT) mice had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg)...
متن کاملTime-dependent changes of autophagy and apoptosis in lipopolysaccharide-induced rat acute lung injury
Objective(s): Abnormal lung cell death including autophagy and apoptosis is the central feature in acute lung injury (ALI). To identify the cellular mechanisms and the chronology by which different types of lung cell death are activated during lipopolysaccharide (LPS)-induced ALI, we decided to evaluate autophagy (by LC3-II and autophagosome) and apoptosis (by caspase-3) at different time point...
متن کاملMap kinase phosphatase 5 protects against sepsis-induced acute lung injury.
Mitogen-activated protein kinases (MAPKs) play a critical role in inflammation. Although activation of MAPK in inflammatory cells has been studied extensively, much less is known about the inactivation of these kinases. MAPK phosphatase 5 (MKP5) is a member of the dual-specificity phosphatase family that dephosphorylates activated MAPKs. Here we report that MKP5 protects sepsis-induced acute lu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 293 2 شماره
صفحات -
تاریخ انتشار 2007